当前位置:文库下载 > 所有分类 > 初中教育 > 学科竞赛 > 新课标九年级数学竞赛辅导讲座+第二十三讲+圆与圆
免费下载此文档

新课标九年级数学竞赛辅导讲座+第二十三讲+圆与圆

第二十三讲 圆与圆

圆与圆的位置关系有外离、外切、相交、内切、内含五种情形,判定两圆的位置关系有如下三种方法:

1.通过两圆交点的个数确定;

2.通过两圆的半径与圆心距的大小量化确定; 3.通过两圆的公切线的条数确定.

为了沟通两圆,常常添加与两圆都有联系的一些线段,如公共弦、共切线、连心线,以及两圆公共部分相关的角和线段,这是解圆与圆位置关系问题的常用辅助线.

熟悉以下基本图形、基本结论:

【例题求解】

【例1】 如图,⊙Ol与半径为4的⊙O2内切于点A,⊙Ol经过圆心O2,作⊙O2的直径BC交⊙Ol于点D,EF为过点A的公切线,若O2D=22,那么∠

思路点拨 直径、公切线、O2的特殊位置等,隐含丰富的信息,而连O2Ol必过A点,先求出∠D O2A的度数.

注:(1)两圆相切或相交时,公切线或公共弦是重要的类似于“桥梁”的辅助线,它可以使弦切角与圆周角、圆内接四边形的内角与外角得以沟通.同时,又是生成圆幂定理的重要因素.

(2)涉及两圆位置关系的计算题,常作半径、连心线,结合切线性质等构造直角三角形,将分散的条件集中,通过解直角三角形求解.

【例2】 如图,⊙Ol与⊙O2外切于点A,两圆的一条外公切线与⊙O1相切于点B,若AB与两圆的另一条外公切线平行,则⊙Ol 与⊙O2的半径之比为( ) A.2:5 B.1:2 C.1:3 D.2:3

思路点拨 添加辅助线,要探求两半径之间的关系,必须求出∠COlO2 (或∠DO2Ol)的度数,为此需寻求∠CO1B、∠CO1A、∠BO1A的关系.

新课标九年级数学竞赛辅导讲座+第二十三讲+圆与圆

新课标九年级数学竞赛辅导讲座+第二十三讲+圆与圆

新课标九年级数学竞赛辅导讲座+第二十三讲+圆与圆

第1页

免费下载Word文档免费下载:新课标九年级数学竞赛辅导讲座+第二十三讲+圆与圆

(下载1-9页,共9页)

我要评论

返回顶部